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Abstract 

Task scheduling in multiprocessor systems is a challenge NP-complete problem. All practical real-time scheduling algorithms in 

multiprocessor systems present a trade-off between their computational complexity and performance. In this paper, An improved 

Differential Evolution algorithm combined Particle Swarm Optimization idea is proposed to solve the Task Scheduling Problem (TSP) 

in multiprocessor system. The proposed algorithm called Inertial Velocity Differential Evolution (IVDE) consists of an additional 

inertial velocity factor based on adaptive differential evolution algorithm. IVDE optimizes task scheduling to the minimum of the 

overall schedule length. The simulation results show that IVDE algorithm not only reduces the computational complexity, but also is 

easy to get the global optimum compared with GA and Ant Colony Optimizer to solve the task scheduling problem in multiprocessor 
systems. 
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1 Introduction 

 

Many achievements in the field of computer technology in 

the last decades enabled the intensive use of 

multiprocessor systems. In these systems, the key to 

achieving high efficiency is the optimal scheduling of 

parallel programs on multiple processors. Multiprocessor 

scheduling involves the assignment of a set of partially 

ordered computational tasks onto a multiprocessor system 

such that the overall schedule length is minimized [1]. 

Task Scheduling Problem (TSP) belongs to the class NP-

hard problems, even when the processors are fully 

connected and there are no communication delays [2]. 

There are many scientific papers in the area of scheduling 

tasks [3]. In most of these works, different scheduling 

algorithms evaluated on randomly generated graphs of 

business or operations on graphs that are modelled on 

actual applications [4]. A standard set of graph operations 

called. "Standard Task Graph (STG) Set" is introduced 

[4].Commonly used graphs are not available to other 

researchers scheduling problem [5, 6]. Many task 

scheduling algorithms have been developed with moderate 

complexity as a constraint, which is a reasonable 

assumption for general purpose development platforms. 

Generally, the task scheduling algorithms may be divided 

in two main classes: greedy and non-greedy (iterative) 

algorithms [7]. 

Various researchers have proposed heuristic solutions 

to the task scheduling problem that capture the concurrent, 

iterative, and evolutionary nature characteristics of task 

execution [8, 9]. Recently there used an approach based 
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upon Generic Algorithms with different selection [9, 10], 

Ant Colony Optimization [11, 12]. Differential Evolution 

(DE) is a population-based random search heuristic 

parallel evolutionary algorithm. Improved DE such as 

JADE (adaptive differential evolution with optional 

external archive) [13] and CoDE (composite trial vector 

generation strategies differential evolution algorithm) [14] 

has achieved good successful application cases. But there 

are no attentions to apply them to solve the TSP. In this 

paper, we propose a new DE with additional inertial 

velocity factor to solve the TSP and test it with STG set. 

The organization of the paper is as follows. After a 

general introduction of the Particle Swarm Optimization 

and Differential Evolution, an improved differential 

evolution called Inertial Velocity Differential Evolution 

(IVDE) with an additional inertial velocity factor is 

presented and discussed in section 2. Task scheduling 

problem is described in section 3. In section 4, a new state 

variable coder for IVDE and the individual fitness function 

is proposed to solve the TSP. IVDE optimizes the task 

scheduling to minimize the overall schedule length by 

differential evolution. IVDE compared with GA, Ant 

Colony Optimization on a set of graphs from the website 

below: 

http://www.kasahara.elec.waseda.ac.jp/schedule/index.ht

ml [4] is discussed in section 5. The paper has been 

concluded in section 6. 
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2 Improved inertial velocity differential evolution 

 

2.1 CLASSIC PARTICLE SWARM OPTIMIZER (PSO) 

AND DIFFERENTIAL EVOLUTION (DE) 

 

We suppose that the minimized objective function is 

( )
i

xf , 
,1 , ,

( , , , , )
i i i d i D

x x xx   D
R , the feasible 

solution space is 
,min, ,max

1

[ ]
D

i i

i

x x


  . And the initial 

population 1{ ,..., , , }i NpP x x x  is randomly sampled 

from  , where NP is the population size. Particle Swarm 

Optimizer (PSO) is proposed to solve the optimal problem 

by Kennedy and Eberhart in 1995 [15]. The particle 

velocity and position of the formula is given by: 

1

, , 1 1 , , 2 2 , ,( ) ( )k k k k k k k k k

i d i i d lbesti d i d gbest d i dv w v c r x x c r x x      , (1) 

1

, , ,

k k k

i d i d i dx x v   , (2) 

where the superscript k of a variable stands for the k-th 

iteration or k-th generation, the subscript i stands for the i-

th particle, and the subscript d stands for the d-th sub 

dimension. Namely , ,,k k

i d i dx v  is the position and speed in d-

th sub dimension of the i-th particle in the k-th iteration(or 

generation);
k

iw  is the inertia weight factor to avoid PSO 

into local optimum[15]; 1 2,c c  is the constant weight 

factors; 
1 2,k kr r  is the random number in the interval [0,1]; 

,lbesti dx  is currently the i-th particle individual best 

solution in its history; ,gbest dx  is currently the global best 

solution in all particles’ history. 

Differential Evolution (DE) is always used to deal with 

the continuous optimization problem. At k-th generation, 

DE creates a mutant vector 
,1 , ,

( , , , , )
i i i d i D

v v vv 
D

R  

for each individual 
i

x  in current population. Different 

mutation operation will play key role to decide the DE 

performance. One widely used DE mutation operator 

named DE/current-to-best/1/bin is shown as (3): 

1

, , , , 1, 2,(( ) ( ))k k k k k k k

i d i d i best d i d r d r dv x F x x x x        , (3) 

where r1, r2 are the distinct integers randomly selected 

from the range [1,NP] and are also different from i. The 

parameter Fi is called the mutation factor, which amplifies 

the difference vectors. 
,best dx  is the d-th element of the 

best individual in the current population. After mutation, 

DE performs a binomial crossover operator on 
,i dx  and 

,i dv  to generate a trial vector 
,i du : 

,

,

,

(1) ( )k

i d Rk

i d k

i d

v if rand C or d rand D
u

x otherwise

  
 


, (4) 

where i=1,2,…,NP, d=1,2,…,D, rand(D) is a randomly 

chosen integer in [1,D], rand(1) is a uniformly distributed 

random number between 0 and 1 which is generated for 

each individual, and CR∈ [0,1] is called the crossover 

control parameter. Due to the use of rand(.), the trial vector 

iu  differs from its target vector ix . 

If the d-th element 
,i du  of the trial vector iu  is 

infeasible (i.e., out of the boundary), it is reset as follows: 

,max ,min , , ,min

,

,min ,max , , ,max

min{ ,2 }

max{ ,2 }

d d i d i d d

i d

d d i d i d d

x x u if u x
u

x x u if u x

 
 

 
. (5) 

The selection operator is performed to select the better 

one from the target vector 
k

ix  (k-th generation) and the 

trial vector 
k

iu  to enter the next generation 
1k

ix 
: 

1 ( ) ( )k k k

k i i i

i k

i

u if f u f x
x

x otherwise


 

 


. (6) 

 

2.2 IMPROVED DE WITH ADDITIONAL INERTIAL 

VELOCITY FACTOR 

 

To combine the good feature of PSO with DE, we suggest 

an improved DE with additional Inertial Velocity Factor. 

After the inertial velocity factor added, the Equation (3) is 

rewritten as Equations (7) and (8). 

1

, , , , ,

1, 2,

(( )

( ))

k k k k k

i d i d i d i best d i d

k k

r d r d

vel w vel F x x

x x
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, (7) 

1

, , ,

k k k

i d i d i dv x vel   , (8) 

where the superior k and the subscript i and d have the 

same meaning as (1). Namely ,

k

i dvel  is the speed in d-th 

sub dimension of the i-th particle in the k-th iteration (or 

generation), ,

k

i dw  is the inertia weight factor of velocity. Fi 

is the mutation factor, its value estimation method will use 

the same method used in JADE algorithm [13],and the 

“DE/current-to-pbest/1” strategy instead of only adopting 

the best individual in the “current-to-best/1” strategy. 

Namely ,

p

best dx  is randomly chosen as one of the top 100 

p% individuals in the current population with p (0,1]  

instead of ,best dx . The Equation (7) will be: 

 

1

, , , , ,

1, 2,

(( )

( ))

k k k k p k

i d i d i d i best d i d

k k

r d r d

vel w vel F x x

x x

      

 
, (9) 

where 
k

iF  is associated with xi and is re-generated at each 

generation by the adaptation process introduced in (10). At 

k-th generation, the mutation factor Fi of each individual xi 

is independently generated according to a Cauchy 
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distribution with location parameter μF and scale 

parameter 0.1, and then truncated to be 1 if Fi≥1 or 

regenerated if Fi≤0. Denote SF as the set of all successful 

mutation factors in k-th generation. The location parameter 

μF of the Cauchy distribution is initialized to be 0.5 and 

then updated at the end of each generation as (11),where c

(0,1)  is a positive constant and meanL(·) is the Lehmer 

mean calculated by (12). 

( ,0.1)i FF randc  , (10) 

(1 ) ( )F F L Fc c mean S      , (11) 

2

( ) F

F

F S

L F

F S

F
mean S

F









. (12) 

Similarly, we consider the crossover probability CR,i 

also has the different weighting feature, and estimated by 

(13) and (14). 

, ,( ,0.1)R i CR R iwC randn C  , (13) 

(1 ) ( )CR CR A CRc c mean S      , (14) 

where ( ,0.1)CRrandn   is a normal distribution of mean 

μCR and standard deviation 0.1, 
,R iwC  is a modified factor 

with different weighting factor according to their fitness. 

Denote SCR as the set of all successful crossover 

probabilities CR,i ’s at k-th generation. The mean μCR is 

initialized to be 0.5 and then updated at the end of each 

generation as (14), where c (0,1)  is a positive constant 

and meanA(·) is the usual arithmetic mean. 

Let 
min min{ ( )}

i
i

x P
f f x


 , and sort current population in 

their fitness ascending order , { ( )}
i

i sort Ascending i

x P

f sort f x


 . 

And the other parameters will be calculated by the 

following: 
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where k is the iteration times or FEs, 1 2 1 2, , ,     are 

control parameters of the filter to be adjusted with 

iterations. 

 

2.3 INERTIAL VELOCITY DIFFERENTIAL 

EVOLUTION ALGORITHM 

 

Suppose that FEs  is the variable of the objective function 

evaluations, FEsmax is the limit maximum of FEs  for 

optimal problem to solve. The Inertial Velocity 

Differential Evolution (IVDE) algorithm is described as 

the following: 

Step 1: Set the population size NP, the dimension D, the 

value of FEsmax, the percentage p0 of 
p

bestx in (18), the 

parameter value of 
1 2 1 2, , ,     used in (16)~(18). 

Step 2: Generate random initialization population

2
{ , , , }

i n
P  x x x , calculate their fitness and sort in 

ascending order, and set iteration control variable FEs

=NP. 

Step 3: Set i=1. 

Step 4: Select individual xi in current population, 

calculate the inertial velocity weighting factor 
,i dw and 

crossover probability 
,R iwC  by (17) and (16) respectively. 

Then calculate RC  by (13) and iF  by (10). 

Step 5: Calculate the variation vi of individual xi by (9) 

and (8), then determine an individual ui by (4) and (5). 

Step 6: Calculate the fitness of the individual xi, and 

select the optimum assignment from {ui, xi} according to 

greedy selection mechanism by (6), update individuals to 

become the next generation of the population, and record 

the successful individuals to external storage. 

Step 7: i=i+1. If i>NP ,go to Step 8; otherwise, go to 

Step 4. 

Step 8: Set FEs = FEs +NP. 

Step 9: Record all individuals as the current 

population, calculate the F by (11), Fi by (10), μCR by 

(14). 

Step 10: Sort current population according to their 

fitness in ascending order, randomly select one of the top 

100 p% individuals as 
p

bestx . 

Step 11: When FEs <FEsmax, go to Step 3; otherwise, 

the algorithm stops, the best individual will be regarded as 

the optimal solution. 

To apply the IVDE algorithm to solve the TSP, the 

state vector and the individual fitness function should be 

defined corresponding to the TSP. 

 

3 Task scheduling problem 

 

The model of TSP in multiprocessor systems in this work 

can be described as follows [2]: multiprocessor system 

consists of M identical processors (their processing speeds 

are equal). The processors are fully connected and without 

communication delays. Each processor can execute at 

most one job at a time. Run-time of jobs may not be the 

same. A parallel program is represented by a direct acyclic 

graph G=(T,A,S, E). T=(Ti), i =1,2,...,N, represents a set of 

tasks with associated weights (ri), where ri denotes the 

duration of the execution of the job Ti .A=(aij) is the set of 
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directed edges which define a partial order or limit order 

when preceding the execution of tasks set T. A is the set of 

arcs representing the activities such as communication 

delay, (i,j)∈ A is the arc of the acyclic graph G from node 

i to j and there is only one directed arc ( , )i j  from i to j, S 

∈T is the start node, and E∈T is the end node. Let each 

activity duration time be a stochastic variable denoted 

{ , ( , ) }ij i j A    , where ij  are random duration times 

of activity represented by ( , )i j  in A. When Ti and Tj is 

scheduled on the same processor or the activity cost 

ignored, may let 0ij  . And, the schedule by the decision 

vector is denoted ( ,... ,..., )
i Dix x xx  , where 

i
x  is a 

decision variable. It is assumed that all the decision 

variables may be translated into nonnegative integers j 

which denote i-th task is scheduled in j-th processor . Any 

task cannot start until all parents have finished. We denote 

( , )iTS x and ( , )iTF x  as the starting time and the finish 

time of all activities represented by ( , )i j  in A 

respectively. The starting time of the total task can be 

known as 
0 ( , ) 0STS TF x  , then 

( , )
( , ) max{ ( , ) }j i i ij

i j A
TS x TS x r  


   . (19) 

After all tasks have been scheduled, the schedule 

length is defined as 

( , )
( , ) ( , ) max{ ( , ) }E E i i iE

i E A
TF x TS x TS x r   


    . (20) 

Task scheduling goal is to minimize the entire 

execution time of the task schedule x. That is 

( , ) min{ ( , )}EJ x TF x  . (21) 

In the simplified case of communication problems 

between the two jobs is negligible, ie 0ij  . Jobs without 

predecessors are called entry tasks and tasks without 

successors are output operations. Each work is presented 

and appears exactly once in the schedule (completeness 

and uniqueness). An example of graph operations is shown 

in Figure 1 in the rectangle. There are 10 jobs. The circle 

is added to the index of jobs, the value on the right side of 

the circle is the task's duration. Preceding relation is shown 

directed lines (arrows). For example, the execution of 

work with index 4 is necessary to finish the job with the 

second index. Work with indices 8 preceding operations 

with index 1 and 5. The problem of optimal scheduling 

graph operations on a multiprocessor system with 3 

identical processors consists of assigning business 

processes so that all tasks are completed in the shortest 

time [2]. 

 

FIGURE 1 Extended graph operations from example [2] 

 

4 IVDE to solve TSP 

 

Our scheduling goal is to minimize the entire execution 

time of the task schedule in M processors. Since the full 

search (Eng. exhaustive search) space solutions often 

impractical in most work explores the fast heuristic 

methods [1,2]. Heuristics does not guarantee finding the 

optimum, but can quickly find a solution that is close to 

optimal. Most heuristic methods of scheduling activities is 

one of the group scheduling lists. After all the work 

assigned to the priority they are added to the list of non-

allocated jobs, which is sorted by priority drop-down. 

Since the end with the execution of assigned tasks, is 

selected from the list of job with highest priority and 

assigns the most appropriate processor. Algorithms in this 

group differ in accordance with the strategy of assigning 

priorities and the way it selects the most appropriate 

processor. 

 

4.1 REORDER THE TASKS 

 

Reorder the tasks and rename their subscript to from the 

Task List according to their precedence relationship, make 

sure that if i<j, then i jTS TS . This can be done from the 

start point S in a direct acyclic graph G=(T,A,S,E) by 

Breadth-First-Search algorithm. 

 

4.2 PRECEDENCE TASK ORDER CODER FOR IVDE 

 

When using IVDE to solve TSP, we will define individual 

state as a task vector which dimension is equal to the 

number of tasks. For every individual, the precedence 

order of its vector value is a task scheduling sequence 

shown in Figure 2. For example, a ten dimension vector 

x={-9.76,0.388,2.69,9.74, 7.45,-7.58, 1.66, 9.08, -6.84, 

1.25} can be used to solve the TSP shown in Figure 1. 

Because in the solution space, ,min ,max10, 10i ix x   , we 

 
2 

 
1 

 
8 

 
4 

 
5 

 
7 

 
6 

 
3 

 
9 

 
10 

 
S 

 
E 

0 

4 2 

2 1 

1 

4 2 3 

1 2 

0 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo 

347 

 

can translate xi into nonnegative integers j which denote i-

th task is scheduled in j-th processor by the following 

,min ,max ,min(( ) / ( ) 0.5)i i i ij round x x M x x      (22) 

where round(x) is a function to round the elements of x to 

the nearest integers. The vector x mentioned above is 

translated into {1,2,2,3,3,1,2,3,1,2}.And this can be 

regarded as the processor Priority List in the scheduling. 

So the task scheduling is shown in Figure 3. In the process 

of searching for the optimal solution, the individual can 

find the optimal precedence ordering by adjusting its 

value. 

 

FIGURE 2 The relationship bewteen task scheduling and IVDE 
individual 

t 1 2 3 4 5 6 7 8 9 10 11 

P1  T1  T6 T9    

P2 T2 T3 T7   T10  

P3   T4 T5 T8    

FIGURE 3 Task scheduling for problem on Figure 1 by IVDE 

 

4.3 FITNESS FUNCTION OF IVDE TO SOLVE TSP 

 

As shown in Figure 3, a vector x is a task schedule 

sequence, which give a schedule diagram, so we can use 

the maximum of the entire execution time of the schedule 

diagram to establish fitness function. Suppose give a x, the 

task precedence matrix is A=(aij) , consider the task graphs 

without communication costs. Namely, let 0ij  . The 

fitness function of the individual x based on (21) is 

calculated as Figure 4. 

 

FIGURE 4 Fitness calculation algorithm in IVDE 

4.4 THE COMPLEXITY OF IVDE TO SOLVE TSP 

 

The complexity of the IVDE to solve TSP is mainly 

determined by the fitness function calculation. Shown in 

Figure 4, the fitness of x is set as the maximum PFT from 

M processor finish time of all tasks. The complexity of 

calculating PFT is O(N2). After that, the complexity of 

finding the maximum among PFT is O(M). Therefore the 

fitness function calculation complexity is O(N2). IVDE 

can be used to solve TSP to meet the task scheduling 

analysis requirement of a complex system. 

 

5 Numerical experiments 

 

IVDE algorithm is programmed in Matlab environment. 

And the parameters of IVDE algorithm are set as: 

D=N=tasks, FEsmax=105, NP=100, =1.1233 , c=0.1, 

p0=0.35, 
1=0.0000165 , 2 =0.0001 , 

1 50  , 

2 =0.5 . The initial value of 
CR  and 

F  are 0.5. 

As shown in Figure 3, the task scheduling problem is 

solved by IVDE. The minimum time of all task finished in 

3 processors is 10. This is equal to the global optimum of 

this problem. 

To further evaluate our proposed algorithms, we apply 

IVDE to solve some task graphs of specific benchmark 

application programs which are taken from a Standard 

Task Graph (STG) archive [4]. We first select three 

program used in [10] to test IVDE. The first programs of 

this STG set consists of task graphs generated 

randomly(tasks=100,rand000.stg) named Pg1, the second 

program is the robot control named Pg2 (tasks=90, 

robot.stg) as an actual application program and the last 

program is the sparse matrix solver named Pg3 (tasks=98, 

sparse.stg). However, we have not considered the task 

graphs with random communication costs. Namely, let

0ij  . The population size is considered to be 100, and 

the number of generations is considered to be 1000 

generations. The processors is set M=4. The optimal 

solution is shown in Table 1 compared with the results in 

[10]. 

TABLE 1 Comparison with GA Algorithm in [10] 

Application 
Pg1 (Random 

graph) 

Pg2 (Robot 

Control) 

Pg3 (Sparse 

Matrix Solver) 

SGA1[10] 301.6 1331.6 585.8 

SGA2[10] 283.7 969 521.8 

CPGA1[10] 183.4 848.5 301.8 

CPGA2[10] 152.3 826.4 293.8 

IVDE 149 781 486 

 

In Table 1, SGA1 and SGA2 stand for Standard 

Genetic Algorithm with Roulette wheel selection and 

Tournament selection respectively; CPGA1 and CPGA2 

stand for Critical Path Genetic Algorithm with Random 

order and ALAP order respectively in [10]. IVDE has 

gotten the best result for Pg1 and Pg2. For Pg3, the total 

tasks finished in one processor need cost of 1936. If there 

x1 

 

x2 x3 … xi … xN 

T1 T2 T3 … Ti … TN 

x 

 
T 

 

Set N denotes tasks, M denotes processors 

Translate x into integer vector J by Equation (22) 
Define PFT (j) as j-th processor finish time 

Define FT(i) as i-th task finish time 

Define T(i) as i-th task executing time 
Define A(i,j)=1 as i-th task is precedent of j-th task 

For i=1 to N 

      j=J(i) 
      FT(i)=PFT(j)+T(i) 

      If i>1  

          For  q=1 to i-1    
              If A(q,i)==1 

                    If  FT(q)>PFT(j) 

                         PFT(j)=FT(q) 
                          FT(i)=PFT(j)+T(i) 

                     End 

            End 
     End 

     PFT(j)=FT(i)    

End 

Select the maximum of PFT as the fitness of x 
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are four processors to finish these tasks, the ideal minimum 

finished time is one fourth of 1936 in theory, namely 484. 

Therefore the optimal results of CPGA1 and CPGA2 are 

unreasonable. And IVDE has gotten the result of 486 

which is very close to 484.This means that it is a good 

result. 

TABLE 2 Comparison with other algorithm [12] 

STG Tasks Processors PDF/IHS 
Ant 

Colony[12] 
IVDE 

Rand0008 50 2 281 281 281 

Rand0038 50 4 114 114 114 

Rand0107 50 8 155 155 155 

Rand0174 50 16 131 131 131 

Rand0017 100 2 569 569 569 

Rand0066 100 4 253 253 256 

Rand0106 100 8 205 205 205 

Rand0174 100 16 162 162 152 

Rand0020 300 2 827 846 835 

Rand0095 300 8 382 394 385 

Rand0136 300 16 324 339 324 

For further research purposes a set of graphs is utilized 

from the website below: http://www.kasahara.elec. 

waseda.ac.jp/schedule/index.html [4]. Task graphs made 

available therein were divided into groups because of the 

number of tasks. Minimum scheduling length is calculated 

by means of PDF/HIS algorithm (Parallelized Depth 

First/Implicit Heuristic Search) for every tasks graph. 

Different task performance times, discretionary sequence 

constraints as well as random number of processors cause 

STG tasks scheduling problems to be NP-complete 

problems. Out of all solved problems heuristic algorithms 

under research did not find an optimal solution (assuming 

this is the solution obtained with PDF/IHS algorithm) only 

for three of them. So, a parameter, called the relative error, 

is denoted as the error index and defined as |actual value-

optimal value|/optimal value 100%  However, results 

obtained are satisfactory, because the deviation from 

optimum varies from 0.96% to 1.19% which are better than 

the result obtained with Ant Colony optimizer in Table 2. 

 

6 Conclusion 

 

We have developed a new differential evolution algorithm 

with additional inertial velocity factor called Inertial 

Velocity Differential Evolution (IVDE) and proposed a 

new fitness function to solve the task scheduling problems 

for large scale system. We demonstrated our algorithms on 

STG set and get a better solution compared with the other 

heuristic algorithm in the paper [10, 12]. Conducted 

research shows that presented algorithms for task 

scheduling obtain good solutions irrespectively of 

investigated problem complexity. These solutions are 

considered optimal or sub-optimal whose deviation from 

optimum does not exceed 2%. Heuristic algorithms 

proposed for task scheduling problems, especially IVDE, 

should be a good tool for supporting planning process. 
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