

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

343

Task scheduling in multiprocessor systems using inertial velocity
differential evolution

Xiaohong Qiu1*, Yuting Hu2, Bo Li1
1Software School, Jiangxi University of Science and Technology, Nanchang 330013, China

2School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Received 9 August 2014, www.cmnt.lv

Abstract

Task scheduling in multiprocessor systems is a challenge NP-complete problem. All practical real-time scheduling algorithms in

multiprocessor systems present a trade-off between their computational complexity and performance. In this paper, An improved

Differential Evolution algorithm combined Particle Swarm Optimization idea is proposed to solve the Task Scheduling Problem (TSP)

in multiprocessor system. The proposed algorithm called Inertial Velocity Differential Evolution (IVDE) consists of an additional

inertial velocity factor based on adaptive differential evolution algorithm. IVDE optimizes task scheduling to the minimum of the

overall schedule length. The simulation results show that IVDE algorithm not only reduces the computational complexity, but also is

easy to get the global optimum compared with GA and Ant Colony Optimizer to solve the task scheduling problem in multiprocessor
systems.

Keywords: multiprocessor systems, task scheduling problem, differential evolution; algorithm

1 Introduction

Many achievements in the field of computer technology in

the last decades enabled the intensive use of

multiprocessor systems. In these systems, the key to

achieving high efficiency is the optimal scheduling of

parallel programs on multiple processors. Multiprocessor

scheduling involves the assignment of a set of partially

ordered computational tasks onto a multiprocessor system

such that the overall schedule length is minimized [1].

Task Scheduling Problem (TSP) belongs to the class NP-

hard problems, even when the processors are fully

connected and there are no communication delays [2].

There are many scientific papers in the area of scheduling

tasks [3]. In most of these works, different scheduling

algorithms evaluated on randomly generated graphs of

business or operations on graphs that are modelled on

actual applications [4]. A standard set of graph operations

called. "Standard Task Graph (STG) Set" is introduced

[4].Commonly used graphs are not available to other

researchers scheduling problem [5, 6]. Many task

scheduling algorithms have been developed with moderate

complexity as a constraint, which is a reasonable

assumption for general purpose development platforms.

Generally, the task scheduling algorithms may be divided

in two main classes: greedy and non-greedy (iterative)

algorithms [7].

Various researchers have proposed heuristic solutions

to the task scheduling problem that capture the concurrent,

iterative, and evolutionary nature characteristics of task

execution [8, 9]. Recently there used an approach based

* Corresponding author’s e-mail: jxauqiu@163.com

upon Generic Algorithms with different selection [9, 10],

Ant Colony Optimization [11, 12]. Differential Evolution

(DE) is a population-based random search heuristic

parallel evolutionary algorithm. Improved DE such as

JADE (adaptive differential evolution with optional

external archive) [13] and CoDE (composite trial vector

generation strategies differential evolution algorithm) [14]

has achieved good successful application cases. But there

are no attentions to apply them to solve the TSP. In this

paper, we propose a new DE with additional inertial

velocity factor to solve the TSP and test it with STG set.

The organization of the paper is as follows. After a

general introduction of the Particle Swarm Optimization

and Differential Evolution, an improved differential

evolution called Inertial Velocity Differential Evolution

(IVDE) with an additional inertial velocity factor is

presented and discussed in section 2. Task scheduling

problem is described in section 3. In section 4, a new state

variable coder for IVDE and the individual fitness function

is proposed to solve the TSP. IVDE optimizes the task

scheduling to minimize the overall schedule length by

differential evolution. IVDE compared with GA, Ant

Colony Optimization on a set of graphs from the website

below:

http://www.kasahara.elec.waseda.ac.jp/schedule/index.ht

ml [4] is discussed in section 5. The paper has been

concluded in section 6.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

344

2 Improved inertial velocity differential evolution

2.1 CLASSIC PARTICLE SWARM OPTIMIZER (PSO)

AND DIFFERENTIAL EVOLUTION (DE)

We suppose that the minimized objective function is

()
i

xf ,
,1 , ,

(, , , ,)
i i i d i D

x x xx  D
R , the feasible

solution space is
,min, ,max

1

[]
D

i i

i

x x


  . And the initial

population 1{ ,..., , , }i NpP x x x is randomly sampled

from  , where NP is the population size. Particle Swarm

Optimizer (PSO) is proposed to solve the optimal problem

by Kennedy and Eberhart in 1995 [15]. The particle

velocity and position of the formula is given by:

1

, , 1 1 , , 2 2 , ,() ()k k k k k k k k k

i d i i d lbesti d i d gbest d i dv w v c r x x c r x x      , (1)

1

, , ,

k k k

i d i d i dx x v   , (2)

where the superscript k of a variable stands for the k-th

iteration or k-th generation, the subscript i stands for the i-

th particle, and the subscript d stands for the d-th sub

dimension. Namely , ,,k k

i d i dx v is the position and speed in d-

th sub dimension of the i-th particle in the k-th iteration(or

generation);
k

iw is the inertia weight factor to avoid PSO

into local optimum[15]; 1 2,c c is the constant weight

factors;
1 2,k kr r is the random number in the interval [0,1];

,lbesti dx is currently the i-th particle individual best

solution in its history; ,gbest dx is currently the global best

solution in all particles’ history.

Differential Evolution (DE) is always used to deal with

the continuous optimization problem. At k-th generation,

DE creates a mutant vector
,1 , ,

(, , , ,)
i i i d i D

v v vv 
D

R

for each individual
i

x in current population. Different

mutation operation will play key role to decide the DE

performance. One widely used DE mutation operator

named DE/current-to-best/1/bin is shown as (3):

1

, , , , 1, 2,(() ())k k k k k k k

i d i d i best d i d r d r dv x F x x x x        , (3)

where r1, r2 are the distinct integers randomly selected

from the range [1,NP] and are also different from i. The

parameter Fi is called the mutation factor, which amplifies

the difference vectors.
,best dx is the d-th element of the

best individual in the current population. After mutation,

DE performs a binomial crossover operator on
,i dx and

,i dv to generate a trial vector
,i du :

,

,

,

(1) ()k

i d Rk

i d k

i d

v if rand C or d rand D
u

x otherwise

  
 


, (4)

where i=1,2,…,NP, d=1,2,…,D, rand(D) is a randomly

chosen integer in [1,D], rand(1) is a uniformly distributed

random number between 0 and 1 which is generated for

each individual, and CR∈ [0,1] is called the crossover

control parameter. Due to the use of rand(.), the trial vector

iu differs from its target vector ix .

If the d-th element
,i du of the trial vector iu is

infeasible (i.e., out of the boundary), it is reset as follows:

,max ,min , , ,min

,

,min ,max , , ,max

min{ ,2 }

max{ ,2 }

d d i d i d d

i d

d d i d i d d

x x u if u x
u

x x u if u x

 
 

 
. (5)

The selection operator is performed to select the better

one from the target vector
k

ix (k-th generation) and the

trial vector
k

iu to enter the next generation
1k

ix 
:

1 () ()k k k

k i i i

i k

i

u if f u f x
x

x otherwise


 

 


. (6)

2.2 IMPROVED DE WITH ADDITIONAL INERTIAL

VELOCITY FACTOR

To combine the good feature of PSO with DE, we suggest

an improved DE with additional Inertial Velocity Factor.

After the inertial velocity factor added, the Equation (3) is

rewritten as Equations (7) and (8).

1

, , , , ,

1, 2,

(()

())

k k k k k

i d i d i d i best d i d

k k

r d r d

vel w vel F x x

x x

      

 
, (7)

1

, , ,

k k k

i d i d i dv x vel   , (8)

where the superior k and the subscript i and d have the

same meaning as (1). Namely ,

k

i dvel is the speed in d-th

sub dimension of the i-th particle in the k-th iteration (or

generation), ,

k

i dw is the inertia weight factor of velocity. Fi

is the mutation factor, its value estimation method will use

the same method used in JADE algorithm [13],and the

“DE/current-to-pbest/1” strategy instead of only adopting

the best individual in the “current-to-best/1” strategy.

Namely ,

p

best dx is randomly chosen as one of the top 100

p% individuals in the current population with p (0,1]

instead of ,best dx . The Equation (7) will be:

1

, , , , ,

1, 2,

(()

())

k k k k p k

i d i d i d i best d i d

k k

r d r d

vel w vel F x x

x x

      

 
, (9)

where
k

iF is associated with xi and is re-generated at each

generation by the adaptation process introduced in (10). At

k-th generation, the mutation factor Fi of each individual xi

is independently generated according to a Cauchy

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

345

distribution with location parameter μF and scale

parameter 0.1, and then truncated to be 1 if Fi≥1 or

regenerated if Fi≤0. Denote SF as the set of all successful

mutation factors in k-th generation. The location parameter

μF of the Cauchy distribution is initialized to be 0.5 and

then updated at the end of each generation as (11),where c

(0,1) is a positive constant and meanL(·) is the Lehmer

mean calculated by (12).

(,0.1)i FF randc  , (10)

(1) ()F F L Fc c mean S      , (11)

2

() F

F

F S

L F

F S

F
mean S

F









. (12)

Similarly, we consider the crossover probability CR,i

also has the different weighting feature, and estimated by

(13) and (14).

, ,(,0.1)R i CR R iwC randn C  , (13)

(1) ()CR CR A CRc c mean S      , (14)

where (,0.1)CRrandn  is a normal distribution of mean

μCR and standard deviation 0.1,
,R iwC is a modified factor

with different weighting factor according to their fitness.

Denote SCR as the set of all successful crossover

probabilities CR,i ’s at k-th generation. The mean μCR is

initialized to be 0.5 and then updated at the end of each

generation as (14), where c (0,1) is a positive constant

and meanA(·) is the usual arithmetic mean.

Let
min min{ ()}

i
i

x P
f f x


 , and sort current population in

their fitness ascending order , { ()}
i

i sort Ascending i

x P

f sort f x


 .

And the other parameters will be calculated by the

following:

,
() sin()

i sort

v

P

f
C i

N
 , (15)

1 2 1 min

,

2 1 min

1
() 0.041 ()

1 1
R iw v

k f
C k C i

k f

  

 

 
   

 
, (16)

1 2 1 min

,

2 1 min

1
() (0.1 (0,1) 0.618)

1 1
i d

k f
w k rand

k f

  

 

 
   

 
, (17)

1 2 1 min

0

2 1 min

1
()

1 1

k f
p k p

k f

  

 

 
  

 
, (18)

where k is the iteration times or FEs, 1 2 1 2, , ,    are

control parameters of the filter to be adjusted with

iterations.

2.3 INERTIAL VELOCITY DIFFERENTIAL

EVOLUTION ALGORITHM

Suppose that FEs is the variable of the objective function

evaluations, FEsmax is the limit maximum of FEs for

optimal problem to solve. The Inertial Velocity

Differential Evolution (IVDE) algorithm is described as

the following:

Step 1: Set the population size NP, the dimension D, the

value of FEsmax, the percentage p0 of
p

bestx in (18), the

parameter value of
1 2 1 2, , ,    used in (16)~(18).

Step 2: Generate random initialization population

2
{ , , , }

i n
P  x x x , calculate their fitness and sort in

ascending order, and set iteration control variable FEs

=NP.

Step 3: Set i=1.

Step 4: Select individual xi in current population,

calculate the inertial velocity weighting factor
,i dw and

crossover probability
,R iwC by (17) and (16) respectively.

Then calculate RC by (13) and iF by (10).

Step 5: Calculate the variation vi of individual xi by (9)

and (8), then determine an individual ui by (4) and (5).

Step 6: Calculate the fitness of the individual xi, and

select the optimum assignment from {ui, xi} according to

greedy selection mechanism by (6), update individuals to

become the next generation of the population, and record

the successful individuals to external storage.

Step 7: i=i+1. If i>NP ,go to Step 8; otherwise, go to

Step 4.

Step 8: Set FEs = FEs +NP.

Step 9: Record all individuals as the current

population, calculate the F by (11), Fi by (10), μCR by

(14).

Step 10: Sort current population according to their

fitness in ascending order, randomly select one of the top

100 p% individuals as
p

bestx .

Step 11: When FEs <FEsmax, go to Step 3; otherwise,

the algorithm stops, the best individual will be regarded as

the optimal solution.

To apply the IVDE algorithm to solve the TSP, the

state vector and the individual fitness function should be

defined corresponding to the TSP.

3 Task scheduling problem

The model of TSP in multiprocessor systems in this work

can be described as follows [2]: multiprocessor system

consists of M identical processors (their processing speeds

are equal). The processors are fully connected and without

communication delays. Each processor can execute at

most one job at a time. Run-time of jobs may not be the

same. A parallel program is represented by a direct acyclic

graph G=(T,A,S, E). T=(Ti), i =1,2,...,N, represents a set of

tasks with associated weights (ri), where ri denotes the

duration of the execution of the job Ti .A=(aij) is the set of

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

346

directed edges which define a partial order or limit order

when preceding the execution of tasks set T. A is the set of

arcs representing the activities such as communication

delay, (i,j)∈ A is the arc of the acyclic graph G from node

i to j and there is only one directed arc (,)i j from i to j, S

∈T is the start node, and E∈T is the end node. Let each

activity duration time be a stochastic variable denoted

{ , (,) }ij i j A   , where ij are random duration times

of activity represented by (,)i j in A. When Ti and Tj is

scheduled on the same processor or the activity cost

ignored, may let 0ij  . And, the schedule by the decision

vector is denoted (,... ,...,)
i Dix x xx  , where

i
x is a

decision variable. It is assumed that all the decision

variables may be translated into nonnegative integers j

which denote i-th task is scheduled in j-th processor . Any

task cannot start until all parents have finished. We denote

(,)iTS x and (,)iTF x as the starting time and the finish

time of all activities represented by (,)i j in A

respectively. The starting time of the total task can be

known as
0 (,) 0STS TF x  , then

(,)
(,) max{ (,) }j i i ij

i j A
TS x TS x r  


   . (19)

After all tasks have been scheduled, the schedule

length is defined as

(,)
(,) (,) max{ (,) }E E i i iE

i E A
TF x TS x TS x r   


    . (20)

Task scheduling goal is to minimize the entire

execution time of the task schedule x. That is

(,) min{ (,)}EJ x TF x  . (21)

In the simplified case of communication problems

between the two jobs is negligible, ie 0ij  . Jobs without

predecessors are called entry tasks and tasks without

successors are output operations. Each work is presented

and appears exactly once in the schedule (completeness

and uniqueness). An example of graph operations is shown

in Figure 1 in the rectangle. There are 10 jobs. The circle

is added to the index of jobs, the value on the right side of

the circle is the task's duration. Preceding relation is shown

directed lines (arrows). For example, the execution of

work with index 4 is necessary to finish the job with the

second index. Work with indices 8 preceding operations

with index 1 and 5. The problem of optimal scheduling

graph operations on a multiprocessor system with 3

identical processors consists of assigning business

processes so that all tasks are completed in the shortest

time [2].

FIGURE 1 Extended graph operations from example [2]

4 IVDE to solve TSP

Our scheduling goal is to minimize the entire execution

time of the task schedule in M processors. Since the full

search (Eng. exhaustive search) space solutions often

impractical in most work explores the fast heuristic

methods [1,2]. Heuristics does not guarantee finding the

optimum, but can quickly find a solution that is close to

optimal. Most heuristic methods of scheduling activities is

one of the group scheduling lists. After all the work

assigned to the priority they are added to the list of non-

allocated jobs, which is sorted by priority drop-down.

Since the end with the execution of assigned tasks, is

selected from the list of job with highest priority and

assigns the most appropriate processor. Algorithms in this

group differ in accordance with the strategy of assigning

priorities and the way it selects the most appropriate

processor.

4.1 REORDER THE TASKS

Reorder the tasks and rename their subscript to from the

Task List according to their precedence relationship, make

sure that if i<j, then i jTS TS . This can be done from the

start point S in a direct acyclic graph G=(T,A,S,E) by

Breadth-First-Search algorithm.

4.2 PRECEDENCE TASK ORDER CODER FOR IVDE

When using IVDE to solve TSP, we will define individual

state as a task vector which dimension is equal to the

number of tasks. For every individual, the precedence

order of its vector value is a task scheduling sequence

shown in Figure 2. For example, a ten dimension vector

x={-9.76,0.388,2.69,9.74, 7.45,-7.58, 1.66, 9.08, -6.84,

1.25} can be used to solve the TSP shown in Figure 1.

Because in the solution space, ,min ,max10, 10i ix x   , we

2

1

8

4

5

7

6

3

9

10

S

E

0

4 2

2 1

1

4 2 3

1 2

0

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

347

can translate xi into nonnegative integers j which denote i-

th task is scheduled in j-th processor by the following

,min ,max ,min(() / () 0.5)i i i ij round x x M x x     (22)

where round(x) is a function to round the elements of x to

the nearest integers. The vector x mentioned above is

translated into {1,2,2,3,3,1,2,3,1,2}.And this can be

regarded as the processor Priority List in the scheduling.

So the task scheduling is shown in Figure 3. In the process

of searching for the optimal solution, the individual can

find the optimal precedence ordering by adjusting its

value.

FIGURE 2 The relationship bewteen task scheduling and IVDE
individual

t 1 2 3 4 5 6 7 8 9 10 11

P1 T1 T6 T9

P2 T2 T3 T7 T10

P3 T4 T5 T8

FIGURE 3 Task scheduling for problem on Figure 1 by IVDE

4.3 FITNESS FUNCTION OF IVDE TO SOLVE TSP

As shown in Figure 3, a vector x is a task schedule

sequence, which give a schedule diagram, so we can use

the maximum of the entire execution time of the schedule

diagram to establish fitness function. Suppose give a x, the

task precedence matrix is A=(aij) , consider the task graphs

without communication costs. Namely, let 0ij  . The

fitness function of the individual x based on (21) is

calculated as Figure 4.

FIGURE 4 Fitness calculation algorithm in IVDE

4.4 THE COMPLEXITY OF IVDE TO SOLVE TSP

The complexity of the IVDE to solve TSP is mainly

determined by the fitness function calculation. Shown in

Figure 4, the fitness of x is set as the maximum PFT from

M processor finish time of all tasks. The complexity of

calculating PFT is O(N2). After that, the complexity of

finding the maximum among PFT is O(M). Therefore the

fitness function calculation complexity is O(N2). IVDE

can be used to solve TSP to meet the task scheduling

analysis requirement of a complex system.

5 Numerical experiments

IVDE algorithm is programmed in Matlab environment.

And the parameters of IVDE algorithm are set as:

D=N=tasks, FEsmax=105, NP=100, =1.1233 , c=0.1,

p0=0.35,
1=0.0000165 , 2 =0.0001 ,

1 50  ,

2 =0.5 . The initial value of
CR and

F are 0.5.

As shown in Figure 3, the task scheduling problem is

solved by IVDE. The minimum time of all task finished in

3 processors is 10. This is equal to the global optimum of

this problem.

To further evaluate our proposed algorithms, we apply

IVDE to solve some task graphs of specific benchmark

application programs which are taken from a Standard

Task Graph (STG) archive [4]. We first select three

program used in [10] to test IVDE. The first programs of

this STG set consists of task graphs generated

randomly(tasks=100,rand000.stg) named Pg1, the second

program is the robot control named Pg2 (tasks=90,

robot.stg) as an actual application program and the last

program is the sparse matrix solver named Pg3 (tasks=98,

sparse.stg). However, we have not considered the task

graphs with random communication costs. Namely, let

0ij  . The population size is considered to be 100, and

the number of generations is considered to be 1000

generations. The processors is set M=4. The optimal

solution is shown in Table 1 compared with the results in

[10].

TABLE 1 Comparison with GA Algorithm in [10]

Application
Pg1 (Random

graph)

Pg2 (Robot

Control)

Pg3 (Sparse

Matrix Solver)

SGA1[10] 301.6 1331.6 585.8

SGA2[10] 283.7 969 521.8

CPGA1[10] 183.4 848.5 301.8

CPGA2[10] 152.3 826.4 293.8

IVDE 149 781 486

In Table 1, SGA1 and SGA2 stand for Standard

Genetic Algorithm with Roulette wheel selection and

Tournament selection respectively; CPGA1 and CPGA2

stand for Critical Path Genetic Algorithm with Random

order and ALAP order respectively in [10]. IVDE has

gotten the best result for Pg1 and Pg2. For Pg3, the total

tasks finished in one processor need cost of 1936. If there

x1

x2 x3 … xi … xN

T1 T2 T3 … Ti … TN

x

T

Set N denotes tasks, M denotes processors

Translate x into integer vector J by Equation (22)
Define PFT (j) as j-th processor finish time

Define FT(i) as i-th task finish time

Define T(i) as i-th task executing time
Define A(i,j)=1 as i-th task is precedent of j-th task

For i=1 to N

 j=J(i)
 FT(i)=PFT(j)+T(i)

 If i>1

 For q=1 to i-1
 If A(q,i)==1

 If FT(q)>PFT(j)

 PFT(j)=FT(q)
 FT(i)=PFT(j)+T(i)

 End

 End
 End

 PFT(j)=FT(i)

End

Select the maximum of PFT as the fitness of x

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

348

are four processors to finish these tasks, the ideal minimum

finished time is one fourth of 1936 in theory, namely 484.

Therefore the optimal results of CPGA1 and CPGA2 are

unreasonable. And IVDE has gotten the result of 486

which is very close to 484.This means that it is a good

result.

TABLE 2 Comparison with other algorithm [12]

STG Tasks Processors PDF/IHS
Ant

Colony[12]
IVDE

Rand0008 50 2 281 281 281

Rand0038 50 4 114 114 114

Rand0107 50 8 155 155 155

Rand0174 50 16 131 131 131

Rand0017 100 2 569 569 569

Rand0066 100 4 253 253 256

Rand0106 100 8 205 205 205

Rand0174 100 16 162 162 152

Rand0020 300 2 827 846 835

Rand0095 300 8 382 394 385

Rand0136 300 16 324 339 324

For further research purposes a set of graphs is utilized

from the website below: http://www.kasahara.elec.

waseda.ac.jp/schedule/index.html [4]. Task graphs made

available therein were divided into groups because of the

number of tasks. Minimum scheduling length is calculated

by means of PDF/HIS algorithm (Parallelized Depth

First/Implicit Heuristic Search) for every tasks graph.

Different task performance times, discretionary sequence

constraints as well as random number of processors cause

STG tasks scheduling problems to be NP-complete

problems. Out of all solved problems heuristic algorithms

under research did not find an optimal solution (assuming

this is the solution obtained with PDF/IHS algorithm) only

for three of them. So, a parameter, called the relative error,

is denoted as the error index and defined as |actual value-

optimal value|/optimal value 100% However, results

obtained are satisfactory, because the deviation from

optimum varies from 0.96% to 1.19% which are better than

the result obtained with Ant Colony optimizer in Table 2.

6 Conclusion

We have developed a new differential evolution algorithm

with additional inertial velocity factor called Inertial

Velocity Differential Evolution (IVDE) and proposed a

new fitness function to solve the task scheduling problems

for large scale system. We demonstrated our algorithms on

STG set and get a better solution compared with the other

heuristic algorithm in the paper [10, 12]. Conducted

research shows that presented algorithms for task

scheduling obtain good solutions irrespectively of

investigated problem complexity. These solutions are

considered optimal or sub-optimal whose deviation from

optimum does not exceed 2%. Heuristic algorithms

proposed for task scheduling problems, especially IVDE,

should be a good tool for supporting planning process.

Acknowledgments

The research is supported by the National Natural Science

Foundation of Jiangxi Province, China (Grant No.

20132BAB201044) and Jiangxi Higher Technology

Landing Project (Grant No.KJLD12071).

References

[1] Lee Y, Chen C 2003 A Modified Genetic Algorithm for Task

Scheduling in Multiprocessor Systems Compiler Techniques for

High-Performance Computing URL:
http://parallel.iis.sinica.edu.tw/cthpc2003/ 16 Jan 2014

[2] Golub M, KasapoviĆ S 2002 Scheduling Multiprocessor Tasks With

Genetic Algorithms Proceedings of the IASTED International

Conference Innsbruck 273-8

[3] Correa RC, Ferreira A, Rebreyend P 1999 Scheduling

Multiprocessor Tasks with Genetic Algorithms IEEE Transactions
on Parallel and Distributed systems 8 825-37

[4] Advanced Computing Systems. Standard Task Graph Set URL:

http://www.kasahara.elec.waseda.ac.jp/schedule/ 1 Jul 2014
[5] Markenscoff P, Joe D 1990 Computation of Tasks Modeled by

Directed Acyclic Graphs on Distributed Computer Systems:

Allocation Without Subtask Replication IEEE Int’l Symp on Circuits
& Sys 2400-4

[6] Lee C, 1992 Optimal Task Assignment in Linear Array Networks

IEEE Trans. on Computers 41(7)
[7] Nanda A, et. al 1992 Scheduling Directed Task Graphs on

Multiprocessors Using Simulated Annealing Proc. Int’l Conf. on

Dist. Sys 20-7

[8] Lu M, Lam H C, Dai F 2008 Resource-constrained Critical Path

Analysis based on discrete event Simulation and Particle Swarm

Optimization Automation in Construction 17 670-81
[9] Chang C K, Jiang H, Di Y, Zhu D, Ge Y 2008 Time-line Based

Model for Software Project Scheduling with Genetic Algorithms

Information and Software Technology 11 1142–54

[10] Omara Fatma A, Arafa Mona M 2010 Genetic algorithms for task

scheduling problem Journal of Parallel and Distributed Computing

70(1) 13-22
[11] Montgomery J, Fayad C, Petrovic S 2006 Solution representation for

job shop scheduling problems in ant colony optimization LNCS 4150

484-91
[12] Helio J C, Barbosa 2013 Ant Colony Optimization - Techniques and

Applications ISBN 978-953-51-1001-9, Published:InTech 212

[13] Zhang J, Sanderson A C 2009 JADE: adaptive differential evolution
with optional external archive IEEE Trans Evolut Comput 13(5) 945-

58

[14] Wang Y, Cai Z, Zhang Q 2011 Differential Evolution With
Composite Trial Vector Generation Strategies and Control

Parameters IEEE Trans Evolutionary Computation 15(1) 55-66

[15] Kennedy J, Eberhart.R C 1995 Particle swarm optimization [C]
Proceedings of IEEE Conference on Neural Networks IV,

Piscataway, NJ IEEE Press 1942-8

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 343-349 Qiu Xiaohong, Hu Yuting, Li Bo

349

Authors

Xiaohong Qiu, Jiangxi, China.

Current position, grades: professor of Software School, Jiangxi University of Science and Technology.

University studies: Engineering Doctor of Vehicle Control Guidance and Simulation. In 1995 graduated from the Department of Automation, Beijing
University of Aeronautics and Astronautics.

Scientific interest: intelligent control and intelligent computing.

Publications: about 65 papers.

Yuting Hu, October 05, 1990, Jiangxi, China.

Current position, grades: Post-graduate student in the Jiangxi University of Science and Technology.

University studies: Bachelor of Engineering in School of Electrical Engineering and Automation ,Jiangxi University of Science and Technology (2008-
2012)

Scientific interest: intelligent computing.

Bo Li, July 08, 1979, Jiangxi, China.

Current position, grades: lecturer of Software School, Jiangxi University of Science and Technology.

University studies: Master of Engineering in School of Science, Jiangxi University of Science and Technology (2002-2005).

Scientific interest: intelligent computing.

